Optimising degreening conditions to reduce lemon chilling injury

Andrew Macnish, Hung Duong, Lawrence Smith, Andrew Mead, Peter Hofman
Supply Chain Innovations, DAF Queensland
When things don’t go to plan

Monitoring fruit quality during export

• Lemon shipments occasionally arrive in Asian markets with an unacceptably high incidence of skin defects

• Variation in fruit source, harvest time, degreening and pre-cooling practices and shipment temperatures could contribute to these defects
When things don’t go to plan

Monitoring from farm to retail

- Variation in degreening room temperature and ethylene concentrations were observed in central Qld facilities.
When things don’t go to plan
Monitoring from farm to retail

• Shipment temperatures varied between 2-3°C
Identifying contributing factors…

Trial 1. Temperature x ethylene

Aim: Identify effect of temperature and ethylene concentration on skin colour and defects

Materials and method:

- Late season 2017 ‘Eureka’ seedless lemons were harvested from three blocks at a Qld farm
- Fruit were degreened at 3 temperatures (24, 29, 34°C) and 3 ethylene concentrations (0, 5 and 29 ppm) for 3 days
- After degreening, fruit were stored at 1°C for 21 days then held at 20°C for 6 days to assess skin defects
Fruit assessment:

• Minolta colour meter was used to measure skin colour (hue angle):

 113° 106° 99° 96°

• Chilling injury (CI) was assessed using a 0-3 rating scale:

 0; nil 1; <1cm² 2; 1-3 cm² 3; >3 cm²

Diffuse CI
Trial 1 Results

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)

0 5 10 15 20 25 30

Degreening temperature (°C)

LSD

Effect of temperature and ethylene on colour development

After 3 days of degreening

Skin colour (H°)

Ethylene concentration (ppm)
Trial 1 Results

Effect of temperature and ethylene on CI incidence

Degreening at 24°C plus 5 ppm ethylene gave the best outcome in terms of colour and minimising skin defects.
Identifying contributing factors…

Trial 2. Temperature x time

Aim: Identify the optimal time and temperature to degreen lemons without increasing skin defects

Materials and method:
- Early season 2018 ‘Eureka’ seeded lemons were harvested from three blocks at a Qld farm
- Fruit were degreened with 5 ppm ethylene at 20, 23, 26, and 29°C for 0, 1, 2, 3 and 5 days
- They were consolidated at 7°C for 2 days
- Fruit were stored at 1°C for 21 days then held at 20°C
Trial 2 Results

Effect of duration and temperature on skin colour change

After degreening

Cold removal/Sea freight
Trial 2 Results

Effect of duration and temperature on skin defects

<table>
<thead>
<tr>
<th>Removal time (day)</th>
<th>Temperature (°C)</th>
<th>% of fruit with any diffuse chilling injury at retail assessment</th>
<th>Temperature (°C)</th>
<th>% of fruit with any rot at retail assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>23</td>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>3.3</td>
<td>0.0</td>
<td>0.0</td>
<td>6.7</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>6.7</td>
<td>3.3</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>6.7</td>
<td>6.7</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- Chilling and rots tended to occur on fruit that were degreened at higher temperatures (26 and 29°C) and for the longest time (5 days).
Ensuring good fruit quality in-market

- Be aware that fruit robustness varies ✓
- Don’t degreen above 26°C with ethylene ✗
- Don’t treat with more than 5 ppm ethylene ✗
- Do degreen lemons at 20-24°C for 3 days ✓
- Do condition fruit for 1-3 days prior to cooling ✓
- Ensure shipment temperatures are maintained just below the maximum protocol limit ✓

Solution: Regularly monitor degreening and shipping conditions
Wouldn’t it be great if we could predict the robustness of lemons for export?

Thank you!

The Serviced Supply Chains project is funded by the Hort Frontiers Asian Markets Fund, part of the Hort Frontiers strategic partnership initiative developed by Hort Innovation, with co-investment from the Department of Agriculture and Fisheries, Queensland, Department of Jobs, Precincts & Regions (Victoria), Manbulloo (mangoes), Montague Fresh (summerfruit), Glen Grove (citrus), the Australian Government plus in-kind support from The University of Queensland and the Chinese Academy of Sciences.